
Insert
Custom
Session
QR if
Desired.

COBOL V5.2 Was Announced! What's New?

Session 16609

Speaker: Tom Ross (Captain COBOL)

March 2, 2015

COBOL V5.2 Was Announced! What's New?

• Agenda
– New hardware exploitation: z13
– Continuous improvement!
– Announcing access to z/OS JSON services from COBOL
– New compiler options
– New COBOL language
– Easier migration path

2

Introducing Enterprise COBOL V5.2

• Announced January 13, 2015
• GA February 27
• PID 5655-W32

• The second release of IBM’s groundbreaking new COBOL compiler technology
that was first introduced in June, 2013

3

Enterprise COBOL V5.2

• New hardware exploitation: z13
– The first time COBOL has announced new hardware support on Day 1
– SIMD (Vector Processing) instructions used for some INSPECT TALLYING or

REPLACING statements
• Single Instruction Multiple Data (SIMD) instructions for vector operations

– More use of DFP (Dec Floating Point) instructions for PACKED-DECIMAL data
– New instruction scheduler at OPT(2) and ARCH(11) tuned to new micro

architecture

4

Cool new

IBM z13!

5

(Updated) ARCH quick reference

• ARCH(6)
– 2084-xxx models (z990) 2086-xxx models (z890)

• ARCH(7)
– 2094-xxx models (IBM System z9 EC) 2096-xxx models (IBM System z9® BC)

• ARCH(8)
– 2097-xxx models (IBM System z10 EC) 2098-xxx models (IBM System z10 BC)

• ARCH(9)
– 2817-xxx models (IBM zEnterprise z196 EC) 2818-xxx models (IBM zEnterprise z114 BC)

• ARCH(10)
– 2827-xxx models (IBM zEnterprise EC12) 2828-xxx models (IBM zEnterprise BC12)

• ARCH(11)
– 2964-xxx models (IBM z13)

6

7

Z13: SIMD (Vector Facility) Instructions

WORKING-STORAGE SECTION.
01 VARS.

02 STR PIC X(255).

02 C PIC 9(5) COMP-5 VALUE 0.
PROCEDURE DIVISION.

MOVE ALL 'abc def ghi jkl ' TO STR
PERFORM 100000000 TIMES

INSPECT STR TALLYING C FOR ALL ' '
END-PERFORM

GOBACK

• For INSPECT TALLYING and INSPECT REPLACING

Sample code:

8

Z13: SIMD (Vector Facility) Instructions
V5.2
• ARCH(11)

LHI R0,0xfe

XR R1,R1

LA R12,152(,R8) # STR

VREPIB VRF27,0x40

VGBM VRF25,0x0

L0066: EQU *

VLL VRF24,R0,0(,R12) #

AHI R12,0x10

VCEQB VRF24,VRF24,VRF27

AHI R0,0xfff0

VLCB VRF24,VRF24

VAB VRF25,VRF25,VRF24

JNL L0066

VGBM VRF26,0x0

VSUMB VRF25,VRF25,VRF26

VSUMQF VRF25,VRF25,VRF26

VLGVG R1,VRF25,1(,R1) #

A R1,407(,R8) # C

ST R1,407(,R8) # C

V5.1
• ARCH(10)

LHI R0,0xff
XR R1,R1
LA R12,152(,R8) # STR

L0064: EQU *
CLI 0(,R12),X'40' #
JNOP L0066
LA R1,1(,R1) #

L0066: EQU *
LA R12,1(,R12) #
BRCT R0,L0064
A R1,407(,R8) # C
ST R1,407(,R8) # C

Timing (100 million times in a loop)
V5.1 : 46.63 cpu seconds
V5.2 : 1.54 cpu seconds

V5.2 is 30 times faster or
97% less CPU !!!!

9

z13: DFP (Decimal Floating Point) Instructions

WORKING-STORAGE SECTION.
01 VARS.

02 A PIC S9(25) Packed-Decimal VALUE +1234567890123 456789012345.
02 B PIC S9(25) Packed-Decimal VALUE +2468097531246 809753124680.
02 C PIC S9(25) Packed-Decimal VALUE 0.

PROCEDURE DIVISION.
PERFORM 100000000 TIMES

DIVIDE A BY B GIVING C
END-PERFORM

• For Packed-Decimal (COMP-3) data items

Sample code:

10

z13: DFP (Decimal Floating Point) Instructions

V5.2
• ARCH(11)

CXPT FP0:FP2,152(13,R8),0x8
CXPT FP1:FP3,165(13,R8),0x8
DXTR FP4:FP6,FP0:FP2,FP1:FP3
FIXTR FP0:FP2,9,FP4:FP6
CPXT FP0:FP2,178(13,R8),0x9
AHI R2,0xffff
CIJ R2,L0034,0,HT(mask=0x2),

V5.1
• ARCH(10)

XGR R0,R0
ICMH R0,X'1',152(,R8) # A
L R0,153(,R8) # A
LG R1,157(,R8) # A
CXSTR FP0,R0
XGR R0,R0
ICMH R0,X'1',165(,R8) # B
L R0,166(,R8) # B
LG R1,170(,R8) # B
CXSTR FP1,R0
DXTR FP4:FP6,FP0:FP2,FP1:FP3
FIXTR FP0:FP2,9,FP4:FP6
CSXTR R0:R1,0,FP0:FP2
STCMH R0,X'1',178(,R8) # C
ST R0,179(,R8) # C
STG R1,183(,R8) # C
ZAP 178(13,R8),178(13,R8) # C

Timing (100 million times in a loop)
V5.1 : 2.53 cpu seconds
V5.2 : 1.63 cpu seconds

V5.2 uses 36% less CPU

Enterprise COBOL V5.2

• Continuous improvement!
• Many improvements were added to V5.1 in response to customer’s needs

and are included in the base of V5.2:
– AMODE 24 support
– XMLPARSE(COMPAT)
– VLR(COMPAT)
– MAP(HEX)
– ZONEDATA(MIG)
– These features all ease migration from earlier COBOL compilers

11

Enterprise COBOL V5.2

• AMODE 24 support
– AMODE 24 mode execution now allowed in the same cases as V3 and V4

• Static linking to AMODE 24 assembler programs the big driver here

• XMLPARSE(COMPAT)
– No need to change XML PARSE statements to move to V5!

• VLR(COMPAT)
– You can choose safer Standard-conforming or compatible behavior with

previous compilers
– We have added a message to help improve programs in the spirit of the

Standard-required FS 04 ‘wrong-length READ cases’

12

13

Enterprise COBOL V5.2

• When does the COBOL Standard say that you should get FS=04 for
READ statements of variable-length files?

FD Record Is Varying From 5 To 40
Depending on X.

01 Rec1 PIC X(10).
01 Rec2 PIC X(30).

1 5 10 30 40
| | | | |
---- ----- --------------------- ---------

FS=0

FS=4
5-9

FS=4
31-40

Enterprise COBOL V5.2

• MAP(HEX)
– Customers requested decimal offsets for MAP output, so we changed in V5.1
– Doing math on V4 and V5 listings at the same time was a problem!
– Now users can choose MAP(DEC) for decimal offsets or
– MAP(HEX) for hexadecimal offsets like previous compilers
– MAP by itself will be interpreted as MAP(HEX)

14

Enterprise COBOL V5.2

• ZONEDATA(MIG|PFD)
– Customers moving from NUMPROC(MIG) who also have invalid data got different

results when moving to COBOL V5 and NUMPROC(NOPFD)
– WORKING-STORAGE SECTION.

77 VALUE0 PIC X(4) VALUE '00 0'. *> x’F0F04 0F0’
77 VALUE1 REDEFINES VALUE0 PIC 9(4).
77 VALUE3 PIC X(4) VALUE '00A0'. *> x’F0F0C1F0’
77 VALUE4 REDEFINES VALUE3 PIC 9(4).

PROCEDURE DIVISION.
IF VALUE1 = ZERO

DISPLAY "VALUE1 = ZERO " VALUE1
ELSE

DISPLAY "VALUE1 NOT = ZERO " VALUE1
END-IF

IF VALUE4 = 10
DISPLAY "VALUE4 = 10 " VALUE4

ELSE
DISPLAY "VALUE4 NOT = 10 " VALUE4

END-IF

15

Enterprise COBOL V5.2

• Results with
COBOL V4 and earlier with NUMPROC(MIG) or
COBOL V5 with ZONEDATA(MIG):

VALUE1 = ZERO 00 0
VALUE4 = 10 00A0

• Results with
COBOL V4 and earlier with NUMPROC(PFD or NOPFD) or
COBOL V5 with ZONEDATA(PFD):

VALUE1 NOT = ZERO 00 0
VALUE4 NOT = 10 00A0

16

Enterprise COBOL V5.2

• Announcing access to z/OS JSON services from COBOL
– What’s the problem here?

• Need for generic Web Services client support
– Why did the z/OS BCPii development team write this?

• The z/OS Client Web Enablement Toolkit
– JSON Parser
– HTTP/HTTPS z/OS client services

17

No z/OS Client Generic Web Services

• A few z/OS implementations here and there
– REXX & Curl in USS
– Socket from COBOL
– Apache http client from Java
– DB2 REST UDF
– CICS Sockets
– WOLA & Liberty Profile

• No generic web services available to all z/OS clients
• No general usage JSON parser available in all z/OS environments

18

Enterprise COBOL V5.2

• Announcing access to z/OS JSON services from COBOL
– The new z/OS Client Toolkit JSON parser enables COBOL programmers to parse or

create a JSON document which interfaces with clients such as mobile
• Announcing access to HTTP/HTTPS services from COBOL

– The new z/OS Client Toolkit HTTP services enable COBOL programmers to:
• Init a connection.
• Set the desired HTTP connect options.
• Issue the HTTP connect.
• Init a request.
• Set the desired HTTP request options.
• Issue the HTTP request.
• Process the response.
• Term the request or re-use.
• Term the connection

19

z/OS Client Web Enablement Toolkit Objectives

• Externalize http and https client functions in an easy-to-use
generic fashion for users in almost any z/OS environment

• Implement a native z/OS JSON parser
• Make sure the web services and the payload processing of the

HTTP request body and response body are independent entities
– HTTP/HTTPS functions separate from JSON support

• Make the interface intuitive for people familiar with programming
in this area

• Make the solution z/OS-responsible

20

Enterprise COBOL V5.2

• Announcing a ccess to z/OS JSON services from COBOL
– Install the PTF for APAR OA46575 to enable z/OS Client Web Enablement

Toolkit support on z/OS V2.1.

– Initially, COBOL development will provide coding examples
• In updated manuals or Tech Notes and SHARE presentations

– Later on, COBOL language extensions
• Similar to XML PARSE and XML GENERATE

21

Enterprise COBOL V5.2
* * * * * * * **

* Parses the sample JSON data. *

* *

* Services Used: *

* *

* HWTJPARS: Builds an internal representation of th e specified *

* JSON string. This allows efficient sear ch, traversal,*

* and modification of the JSON data. *

* * * * * * * **

parse-json-text.

CALL ' HWTJPARS' USING HWTJ-RETURN-CODE HWTJ-PARSERHANDLE

json-text-ptr *> address of JSON text string (input)

json-text-len *> length of JSON text string (input)

HWTJ-DIAG-AREA

IF (HWTJ-OK)

DISPLAY 'SUCCESS: JSON data parsed.'

ELSE

DISPLAY 'ERROR: Unable to parse JSON data.'

CALL 'DISPDIAG' USING HWTJ-RETURN-CODE HWTJ-DIAG-AR EA

END-IF

.
22

Enterprise COBOL V5.2

• New compiler options
– QUALIFY option extends ability to reference ambiguous data items
– RULES option to help programmers write better code
– COPYRIGHT and SERVICE options to better manage applications
– Plus (from V5.1 service stream)

• XMLPARSE(COMPAT|XMLSS)
• VLR(COMPAT|STANDARD)
• MAP(HEX|DEC)
• ZONEDATA(MIG|PFD)

23

Enterprise COBOL V5.2

• Changed compiler options
– ARCH

• ARCH(6) not allowed
• ARCH(7) is the new default
• ARCH(11) added for z13

– SIZE
• Gone! Improved memory management by COBOL compiler

24

Enterprise COBOL V5.2

• QUALIFY(EXTEND|COMPAT) compiler option
– QUALIFY(COMPAT)

• If QUALIFY(COMPAT) is in effect, references to data items must be unique.
– QUALIFY(EXTEND)

• If QUALIFY(EXTEND) is in effect, qualification rules are extended so that some
references that are not unique by COBOL standard rules can be unique.

• If every level in the containing hierarchy of names is specified, the set of qualifiers is
called a complete set of qualifiers.

• If there is only one data item with a specific complete set of qualifiers, the reference
resolves to that data item, even if the same set of qualifiers can match with another
reference as an incomplete set of qualifiers.

25

Enterprise COBOL V5.2

• QUALIFY(EXTEND|COMPAT) compiler option
– QUA(EXTEND) extends ability to reference ambiguous data items

01 A.
02 B.

03 C PIC X. *> C of A
03 A PIC X.

02 C PIC X. *> Also C of A

Move Z to C of A *> Refers to 02 level C (unique on ly with QUA(EXTEND))
Move Z to A *> Refers to 01 level A (unique only wi th QUA(EXTEND))
Move Z to C of B of A *> Refers to 03 level C (uniq ue by COBOL std rules)
Move Z to C of B *> Refers to 03 level C (unique by COBOL std rules)

26

Enterprise COBOL V5.2

• RULES compiler option
– Similar to PL/I RULES option
– Allows users to enforce or recommend ‘proper’ coding
– Satisfies many user requirements/requests
– Default is:

• RULES(ENDPERIOD,EVENPACK,LAXPERF,SLACKBYTES)

27

Enterprise COBOL V5.2

• Suboptions for new compiler option RULES in V5.2:
– NOENDPERIOD (NOENDP):

• Flag conditional statements terminated by a period instead of an
explicit scope terminator (END-*)

– NOEVENPACK (NOEVENP):
• Flag even number of digits in PACKED-DECIMAL (Packed-

Decimal) data descriptions
– NOLAXPERF (NOLXPRF)

• Flag COBOL features that are opportunities for performance
improvement

– NOSLACKBYTES (NOSLCKB)
• Flag data definitions that get slack bytes added when

SYNCHRONIZED specified

28

Enterprise COBOL V5.2

• Here is the list of things that RULES(NOLAXPERF) will flag:
– Flag inefficient loops

Perform varying ix1 from 1 by 1 until ix1 > ix1-max
• If ix1 is coded as display value (not packed or binary)
• Different data types used for different operands in the VARYING clause

– Accessing a Table item with a subscript defined without binary/packed
– MOVEs (COMPUTEs, comparisons) with conversion of numeric data

because of different storage representation
– MOVE of character-string to another variable, but with lots of padding

(100 bytes or more), like:
• from-field pic x(10) to-field pic x(32000)
• move from-field to to-field, which will move 10 bytes and then fill spaces into

another 32KB of Memory
– Slow or non-optimal compiler options:

• NOAWO, NOBLOCK0, NOFASTSRT, NUMPROC(NOPFD), OPT(0),
SSRANGE, TRUNC(STD|BIN), ZONEDATA(MIG)

29

Enterprise COBOL V5.2

• COPYRIGHT(‘string’) compiler option
– Places string in object program
– For vendors who ship COBOL executables

• SERVICE(‘string’) compiler option
– Places string in object program
– For users to manage applications
– When doing ‘Software Archeology’ you can get compile date, compiler

version, release, mod, but IBM does not put a service level in the object
– Now users can set a service string to identify which service level of which

compiler was used to compile a program

30

Enterprise COBOL V5.2

• New COBOL language
• Improved XML GENERATE

– More powerful SUPPRESS capabilities

• New VOLATILE attribute and SERVICE LABEL functionality
– Enable OPT(1|2) compilation of User-Written condition handlers

• >>CALLINTERFACE directive
• New features from 2002 COBOL Standard

– Plus a list in the Language Reference Manual of which parts are supported

31

Enterprise COBOL V5.2

• Improved XML GENERATE: SUPPRESS capabilities
– The WHEN phrase of the XML GENERATE statement can be omitted to allow

unconditional suppression of a named identifier when generating XML output.
• If the WHEN phrase is omitted, the identifier can be a group data item.

– A new keyword CONTENT is added to the generic-suppression-phrase to limit
suppression to only TYPE IS CONTENT items

32

Enterprise COBOL V5.2

• New VOLATILE attribute and SERVICE LABEL functionality
– Enable OPT(1|2) compilation of applications with User-Written condition handlers
– VOLATILE can also be used in conjunction with STGOPT

• Specify VOLATILE for unused data items that you don’t want optimized
– WORKING-STORAGE eye-catcher
– Code control time stamp

– Etc

33

VOLATILE example – using LE condition handlers
identification division. *> Main program (causes divide-by-zero exception):
program-id. main.
data division.
local-storage section.
77 user-handler procedure-pointer.
77 token pic S9(9) comp.
01 qty pic 9(8) binary.
01 divisor pic 9(8) binary value 0.
01 answer pic 9(8) binary.
01 step pic 9(8) binary value 0 external
:
Set user-handler to entry 'handler'
Call 'CEEHDLR' using user-handler, token, null
Compute step = 2 *> optimizer thinks this is a “dead store” and remo ves it
Compute answer = number / divisor *> divide-by-zero exception occurs here, handler is invoked,

*> and reference to “step” is made but hidden from compiler
Display 'answer = ' answer

Compute step = 3
Display 'step = ' step
Compute answer = qty + 2

identification division. *> Condition handler program:
program-id. handler.
data division.
local-storage.
01 step pic 9(8) external.
procedure division.
:

display 'Error: a problem was encountered in step ' step.

The handler program can
reference data item “step”,

defined in main program, but the
main program doesn't know this
without the “volatile” keyword.
Thus, the wrong value of step

may be displayed.

volatile .

The solution is to use
the “volatile” clause.

34

Enterprise COBOL V5.2
• >>CALLINTERFACE directive

– Controls the calling convention of calls (DLL, DYNAM or STATIC) on a call-by-call basis.
– Syntax: >>CALLINTERFACE [DLL | DYNAM | STATIC]

• Abbreviation: >>CALLINT
– Overrides settings of DLL and DYNAM compiler options
– Stays in effect until the next >>CALLINTERFACE directive is encountered, or the end of the

program.
• Benefits:

– Allows easy mixing of call types regardless of the setting of the DLL and DYNAM options.
– Allows mixing of DLL, Dynamic and Static calls in any programs!
– With >>CALLINTERFACE, the call type can be controlled very easily.

• e..g,
>>CALLINTERFACE DLL
CALL ‘SUB1’ *> DLL call
CALL ‘SUB2’ *> DLL call
>>CALLINTERFACE DYNAM
CALL ‘SUB3’ *> dynamic call
>>CALLINTERFACE
CALL ‘SUB4’ *> Uses current DLL or DYNAM option

*> setting to determine calling convention

35

Enterprise COBOL V5.2

• Other examples
*> Program compiled with DYNAM

CALL ‘SUB5’ *> Dynamic call

>>CALLINTERFACE DLL
CALL ‘SUB6’ *> DLL call
>>CALLINTERFACE

CALL ‘SUB7’ *> Dynamic call

*> All calls will be dynamic until ..

>>CALLINTERFACE Static
*> All calls will be Static calls

CALL ‘SUB8’ *> Static call

36

Enterprise COBOL V5.2

• New features from 2002 COBOL Standard:
– Format 2 of SORT: the table SORT statement

• Arranges table elements in a user-specified sequence.
– New formats of EXIT statement:

• EXIT SECTION
• EXIT PARAGRAPH
• EXIT PERFORM
• EXIT PERFORM CYCLE

– Improved COPY REPLACING statement
• LEADING and TRAILING phrases (better partial word replacement)
• Nested COPY REPLACING now supported (IBM Extension)

– Improved REPLACE statement
• LEADING and TRAILING phrases (better partial word replacement)

37

Format 2 SORT: Table SORT statement

• The table SORT statement causes table elements to be arranged in a
user-specified sequence.

• Syntax:
SORT data-name-2 [ON { ASCENDING | DESCENDING } KEY [
data-name-1]...]...[WITH DUPLICATES IN ORDER] [COLLATING
SEQUENCE IS alphabet-name-1]

01 mydata.
03 data-list occurs 5 times.

05 data-key pic x.
05 data-nonkey pic x. b y

d z

b x

c w

a v

a v

b y

b x

c w

d z

SORT data-list ON ASCENDING KEY data-key
WITH DUPLICATES IN ORDER
COLLATING SEQUENCE Standard-1

data-list (before sort) data-list (after sort)

38

EXIT statement enhancements

• EXIT [SECTION | PARAGRAPH]
– EXIT SECTION – leaves current section
– EXIT PARAGRAPH – leaves current paragraph

• EXIT PERFORM [CYCLE]
– EXIT PERFORM leaves an inline PERFORM block

• Similar to LEAVEin PL/I and break in 'C'

– EXIT PERFORM CYCLE skips the remainder of the current
iteration of an inline PERFORM block

• Similar to ITERATE in PL/I and continue in 'C'

39

EXIT statement enhancements

working-storage section.
01 n pic 99.
procedure division.
s1 section.
p1.

display 'In p1'
if n < 5 then

exit paragraph *> proceed to p2
else

if n < 10 then
exit section *> proceed to s2

end-if
end-if
display 'After if-statement in p1'.

p2 .
display 'In p2'.

s2 section.
perform 10 times

if n = 5 then
exit perform *> exit perform loop

end-if
display 'perform1 n=' n

End-perform
*> exit perform passes control here
display 'N=' n
perform varying n from 1 by 1 until n = 10

if n = 5 then
exit perform cycle *> next iteration

end-if
display 'perform2 n=' n
*> exit perform cycle passes control here

End-perform
goback.

40

Enterprise COBOL V5.2

– Improved COPY REPLACING statement
• LEADING and TRAILING phrases (better partial word replacement)

– LEADING and TRAILING phrases of the REPLACE statement and the REPLACING
phrase of the COPY statement allow replacement of partial words in source text and
library text. This is useful for prefixing and postfixing names.

• Nested COPY REPLACING now supported (IBM Extension)
– Old rule:

» COPY statements can be nested. However, nested COPY statements cannot
contain the REPLACING phrase, and a COPY statement with the REPLACING
phrase cannot contain nested COPY statements

– One COPY REPLACING allowed in a ‘chain’

» Pgm A has COPY B, B has COPY C, C has COPY D REPLACING

– Improved REPLACE statement
• LEADING and TRAILING phrases (better partial word replacement)

41

New: COPY REPLACING LEADING/TRAILING support

• Syntax for COPY…REPLACING when LEADING/TRAILING specified:

COPY <copy-file-name> [...] REPLACING {LEADING | TRAILING}
== partial-word-1== BY == partial-word-2 == … .

01 DEPT.
02 DEPT-WEEK PIC S99.
02 DEPT-GROSS-PAY PIC S9(5)V99.
02 DEPT-HOURS PIC S999

OCCURS 1 TO 52 TIMES
DEPENDING ON DEPT-WEEK OF
DEPT.

01 PAYROLL.
02 PAYROLL-WEEK PIC S99.
02 PAYROLL-GROSS-PAY PIC S9(5)V99.
02 PAYROLL-HOURS PIC S999

OCCURS 1 TO 52 TIMES
DEPENDING ON PAYROLL-WEEK OF
PAYROLL.

COPY PAYLIB REPLACING LEADING == DEPT == BY == PAYROLL ==.

PAYLIB before replacement Source after COPY of PAYLIB and replacement

42

Nested COPY REPLACING

• An example of a nested copy replacing operation. Here, a program includes PAYLIB,
which itself includes PAYLIB2. The result of the files after replacement is on the right.

01 PAYROLL.
02 PAYROLL-WEEK PIC S99.
02 DEPT- GROSS-PAYPIC S9(5)V99.
02 PAYROLL-HOURS PIC S999 OCCURS 1 TO 52 TIMES

DEPENDING ON PAYROLL-WEEK OF PAYROLL.
COPY PAYLIB2.

01 PAYROLL2.
02 PAYROLL2-WEEK PIC S99.
02 DEPT2- GROSS-PAYPIC S9(5)V99.
02 PAYROLL2-HOURS PIC S999 OCCURS 1 TO 52 TIMES

DEPENDING ON PAYROLL2-WEEK OF PAYROLL2.

01 PAYROLL.
02 PAYROLL-WEEK PIC S99.
02 PAYROLL- NET-PAY PIC S9(5)V99.
02 PAYROLL-HOURS PIC S999 OCCURS 1 TO 52 TIMES

DEPENDING ON PAYROLL-WEEK OF PAYROLL.

01 PAYROLL2.
02 PAYROLL2-WEEK PIC S99.
02 PAYROLL2- NET-PAY PIC S9(5)V99.
02 PAYROLL2-HOURS PIC S999 OCCURS 1 TO 52 TIMES

DEPENDING ON PAYROLL2-WEEK OF PAYROLL2.

PAYLIB

PAYLIB2

COPY PAYLIB REPLACING
LEADING == DEPT == BY == PAYROLL ==
TRAILING == GROSS-PAY == BY == NET-PAY ==.

Resulting source after replacement

43

Enterprise COBOL V5.2 - Migration

• New minimum hardware requirement
– Z890, z990 not supported by COBOL V5.2

• Also not supported by z/OS V2.1
• Otherwise the same prereqs as COBOL V5.1, except:

– Java V5 went EOS Sept 2013
• New FIXCAT keyword to find PTFs required by other products:

– SET BDY(GLOBAL)
REPORT MISSINGFIX ZONES(ZOS13T,ZOS13P)
FIXCAT(IBM.TargetSystem-RequiredService.Enterprise-COBOL.V5R2)

• Migrating from COBOL V5.1 to V5.2
– Similar to V4.1 to V4.2
– Easy, no regression testing required

• Migrating from older compilers to COBOL V5.2
– Different from V4.1 to V4.2
– Same as V3 or V4 to V5.1
– Not so easy, lots of regression testing recommended

44

